Affiliation:
1. School of Mathematics and System Science, Beihang University, Beijing 100191, P. R. China
2. Department of Mathematics, Brigham Young University, Provo 84602, Utah, USA
Abstract
In the three-body problem, it is known that there exists a special set of periodic orbits: spatial isosceles periodic orbits. In each period, one body moves up and down along a straight line, and the other two bodies rotate around this line. In this work, we revisit this set of orbits by applying variational method. Two unexpected phenomena are discovered. First, this set is not always spatial. It actually bifurcates from the circular Euler (central configuration) orbit to the Broucke (collision) orbit. Second, one of the orbits in this set encounters an oscillating behavior. By running its initial condition, the orbit stays periodic for only a few periods before it becomes irregular. However, it moves close to another periodic shape in a while. Shortly it falls apart again and starts running close to a third periodic shape after a moment. This oscillation continues as t increases. Actually, up to t = 1.2 × 105, the orbit is bounded and keeps oscillating between periodic shapes and irregular motions.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献