Nonlinear Dynamic Bifurcation and Chaos Characteristics of Piezoelectric Composite Lattice Sandwich Plates

Author:

Ma Ting1,Zhang Wei123,Zhang Yufei23,Amer A.234,Lim C. W.5ORCID

Affiliation:

1. College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, P. R. China

2. Department of Mechanics, GuangXi University, Nanning 530004, P. R. China

3. State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, GuangXi University, Nanning 530004, P. R. China

4. Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt

5. Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China

Abstract

This paper investigates the nonlinear bifurcation and chaos characteristics of piezoelectric composite lattice sandwich plates at 1:3 internal resonance. The nonlinear vibration partial differential equation is first discretized to become an ordinary differential equation by applying the Galerkin method. The main resonance modulation equations and the parametric resonance for the external excitation frequency that is close to the system’s second-order modal frequency are then obtained by using the multiscale method. The Newton–Raphson method is subsequently applied to obtain the bifurcation diagram of the steady-state equilibrium of modulation equation with varying system parameters. The equilibrium stability is finally analyzed. We confirm the existence of static bifurcation such as saddle-node bifurcation, pitchfork bifurcation, and Hopf dynamic bifurcation. A detailed analysis is also conducted on the complex nonlinear jump phenomenon caused by the presence of multiple nonlinear steady-state solution regions. In the dynamic Hopf bifurcation interval, the fourth-order Runge–Kutta method is used to continue to track the dynamic periodic solution of the modulation equation in Cartesian coordinates. It is found that there are multiple boundary crises and attractor merging crises in the vibration system for piezoelectric composite lattice sandwich plates.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3