THE EXISTENCE AND CLASSIFICATION OF SYNCHRONY-BREAKING BIFURCATIONS IN REGULAR HOMOGENEOUS NETWORKS USING LATTICE STRUCTURES

Author:

KAMEI HIROKO1

Affiliation:

1. MOAC Doctoral Training Centre, University of Warwick, Coventry, CV4 7AL, UK

Abstract

For regular homogeneous networks with simple eigenvalues (real or complex), all possible explicit forms of lattices of balanced equivalence relations can be constructed by introducing lattice generators and lattice indices [Kamei, 2009]. Balanced equivalence relations in the lattice correspond to clusters of partially synchronized cells in a network. In this paper, we restrict attention to regular homogeneous networks with simple real eigenvalues, and one-dimensional internal dynamics for each cell. We first show that lattice elements with nonzero indices indicate the existence of codimension-one synchrony-breaking steady-state bifurcations, and furthermore, the positions of such lattice elements give the number of partially synchronized clusters. Using four-cell regular homogeneous networks as an example, we then classify a large number of regular homogeneous networks into a small number of lattice structures, in which networks share an equivalent clustering type. Indeed, some of these networks even share the same generic bifurcation structure. This classification leads us to explore how regular homogeneous networks that share synchrony-breaking bifurcation structure are topologically related.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reduced Lattices of Synchrony Subspaces and Their Indices;SIAM Journal on Applied Dynamical Systems;2021-01

2. Finite Characterization of the Coarsest Balanced Coloring of a Network;International Journal of Bifurcation and Chaos;2020-11

3. Overdetermined constraints and rigid synchrony patterns for network equilibria;Portugaliae Mathematica;2020-10-14

4. The steady-state lifting bifurcation problem associated with the valency on networks;Physica D: Nonlinear Phenomena;2019-03

5. Characterization of fundamental networks;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2019-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3