PROBING THE LOCAL DYNAMICS OF PERIODIC ORBITS BY THE GENERALIZED ALIGNMENT INDEX (GALI) METHOD

Author:

MANOS T.12,SKOKOS CH.32,ANTONOPOULOS CH.4

Affiliation:

1. University of Nova Gorica, School of Applied Sciences, Vipavska 11c, SI-5270, Ajdovščina, Slovenia

2. Center for Research and Applications of Nonlinear Systems, University of Patras, GR-26500, Patras, Greece

3. Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, D-01187, Dresden, Germany

4. Interdisciplinary Center for Nonlinear Phenomena and Complex Systems (CENOLI), Service de Physique des Systèmes Complexes et Mécanique Statistique, Université Libre de Bruxelles, 1050, Brussels, Belgium

Abstract

As originally formulated, the Generalized Alignment Index (GALI) method of chaos detection has so far been applied to distinguish quasiperiodic from chaotic motion in conservative nonlinear dynamical systems. In this paper, we extend its realm of applicability by using it to investigate the local dynamics of periodic orbits. We show theoretically and verify numerically that for stable periodic orbits, the GALIs tend to zero following particular power laws for Hamiltonian flows, while they fluctuate around nonzero values for symplectic maps. By comparison, the GALIs of unstable periodic orbits tend exponentially to zero, both for flows and maps. We also apply the GALIs for investigating the dynamics in the neighborhood of periodic orbits, and show that for chaotic solutions influenced by the homoclinic tangle of unstable periodic orbits, the GALIs can exhibit a remarkable oscillatory behavior during which their amplitudes change by many orders of magnitude. Finally, we use the GALI method to elucidate further the connection between the dynamics of Hamiltonian flows and symplectic maps. In particular, we show that, using the components of deviation vectors orthogonal to the direction of motion for the computation of GALIs, the indices of stable periodic orbits behave for flows as they do for maps.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Reference45 articles.

1. CHAOTIC DYNAMICS OF N-DEGREE OF FREEDOM HAMILTONIAN SYSTEMS

2. Sensitivity tools vs. Poincaré sections

3. G. Benettin and L. Galgani, Intrinsic Stochasticity in Plasmas, eds. G. Laval and D. Grésillon (Edit. Phys, Orsay, 1979) pp. 93–114.

4. Kolmogorov entropy of a dynamical system with an increasing number of degrees of freedom

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3