Complex-Periodic Spiral Waves Induced by Linearly Polarized Electric Field in the Excitable Medium

Author:

Luo Jinming1,Zhang Xingyong1,Tang Jun2ORCID

Affiliation:

1. School of Mathematics, China University of Mining and Technology, Xuzhou 221116, P. R. China

2. School of Physics, China University of Mining and Technology, Xuzhou 221116, P. R. China

Abstract

Complex-periodic spiral waves are investigated extensively in the oscillatory medium. In this paper, the linearly polarized electric field (LPEF) is employed to induce complex-periodic spiral waves in the excitable medium with abnormal dispersion. As the amplitude of LPEF is increased beyond a threshold, the simple-periodic spiral wave converts into an irregularly complex-periodic one, in which, the local dynamics exhibit several regular spikes followed by one missed spiking period. Furthermore, with the increase of the LPEF amplitude, the missed spiking period follows different numbers of regular spikes [so-called period-1 (P-1), period-2 (P-2), etc.], even a mix of different periods. Meanwhile, the wavelength of the spiral wave transits from a short to a longer one. The pure-periodic (from P-6 to P-2) spirals generally contain defect lines, across which the phase of local oscillation changes by [Formula: see text]. In contrast, there is no defect line in the mixed-periodic spiral waves. This finding indicates that the defect line is not a necessary feature for complex-periodic spiral waves. Moreover, three types of tip trajectories of pure-periodic spiral waves are identified depending on the periods. That is, the outward-petal meandering, the outward-petal meandering with slow modulation, and drifting tip motion, and the tip trajectories could be used to distinguish them from the complex-oscillatory spiral waves.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3