SYMMETRY BREAKING BIFURCATIONS OF CHAOTIC ATTRACTORS

Author:

ASTON PHILIP J.1,DELLNITZ MICHAEL2

Affiliation:

1. Department of Mathematical and Computing Sciences, University of Surrey, Guildford GU2 5XH, UK

2. Department of Mathematics, University of Houston, Houston, Texas 77204-3476, USA

Abstract

In an array of coupled oscillators, synchronous chaos may occur in the sense that all the oscillators behave identically although the corresponding motion is chaotic. When a parameter is varied this fully symmetric dynamical state can lose its stability, and the main purpose of this paper is to investigate which type of dynamical behavior is expected to be observed once the loss of stability has occurred. The essential tool is a classification of Lyapunov exponents based on the symmetry of the underlying problem. This classification is crucial in the derivation of the analytical results but it also allows an efficient computation of the dominant Lyapunov exponent associated with each symmetry type. We show how these dominant exponents determine the stability of invariant sets possessing various instantaneous symmetries, and this leads to the idea of symmetry breaking bifurcations of chaotic attractors. Finally, the results and ideas are illustrated for several systems of coupled oscillators.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3