Affiliation:
1. School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
2. Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
Abstract
The long-term mean-field dynamics of coupled underdamped Duffing oscillators driven by an external periodic signal with Gaussian noise is investigated. A Boltzmann-type [Formula: see text]-theorem is proved for the associated nonlinear Fokker–Planck equation to ensure that the system can always be relaxed to one of the stationary states as time is long enough. Based on a general framework of the linear response theory, the linear dynamical susceptibility of the system order parameter is explicitly deduced. With the spectral amplification factor as a quantifying index, calculation by the method of moments discloses that both mono-peak and double-peak resonance might appear, and that noise can greatly signify the peak of the resonance curve of the coupled underdamped system as compared with a single-element bistable system. Then, with the input signals taken from laboratory experiments, further observations show that the mean-field coupled stochastic resonance system can amplify the periodic input signal. Also, it reveals that for some driving frequencies, the optimal stochastic resonance parameter and the critical bifurcation parameter have a close relationship. Moreover, it is found that the damping coefficient can also give rise to nontrivial nonmonotonic behaviors of the resonance curve, and the resultant resonant peak attains its maximal height if the noise intensity or the coupling strength takes the critical value. The new findings reveal the role of the order parameter in a coupled system of chaotic oscillators.
Funder
National Natural Science Foundation of China (CN)
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献