Stochastic Resonance and Bifurcation of Order Parameter in a Coupled System of Underdamped Duffing Oscillators

Author:

Liu Ruonan1,Kang Yanmei1ORCID,Fu Yuxuan1,Chen Guanrong2

Affiliation:

1. School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China

2. Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR 999077, P. R. China

Abstract

The long-term mean-field dynamics of coupled underdamped Duffing oscillators driven by an external periodic signal with Gaussian noise is investigated. A Boltzmann-type [Formula: see text]-theorem is proved for the associated nonlinear Fokker–Planck equation to ensure that the system can always be relaxed to one of the stationary states as time is long enough. Based on a general framework of the linear response theory, the linear dynamical susceptibility of the system order parameter is explicitly deduced. With the spectral amplification factor as a quantifying index, calculation by the method of moments discloses that both mono-peak and double-peak resonance might appear, and that noise can greatly signify the peak of the resonance curve of the coupled underdamped system as compared with a single-element bistable system. Then, with the input signals taken from laboratory experiments, further observations show that the mean-field coupled stochastic resonance system can amplify the periodic input signal. Also, it reveals that for some driving frequencies, the optimal stochastic resonance parameter and the critical bifurcation parameter have a close relationship. Moreover, it is found that the damping coefficient can also give rise to nontrivial nonmonotonic behaviors of the resonance curve, and the resultant resonant peak attains its maximal height if the noise intensity or the coupling strength takes the critical value. The new findings reveal the role of the order parameter in a coupled system of chaotic oscillators.

Funder

National Natural Science Foundation of China (CN)

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3