Affiliation:
1. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, Shandong Province, P. R. China
2. Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
Abstract
For a class of nonlinear diffusion–convection–reaction equations, the corresponding traveling wave systems are well-known nonlinear oscillation type of systems. Under some parameter conditions, the first integrals of these nonlinear oscillators can be obtained. In this paper, the bifurcations, exact solutions and dynamical behavior of these nonlinear oscillators are studied by using methods of dynamical systems. Under some parametric conditions, exact explicit parametric representations of the monotonic and nonmonotonic kink and anti-kink wave solutions, as well as limit cycles, are obtained. Most important and interestingly, a new global bifurcation phenomenon of limit bifurcation is found: as a key parameter is varied, so that singular points (except the origin) disappear, a planar dynamical system can create a stable limit cycle.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jilin Province
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献