Affiliation:
1. State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
2. State Grid Shanxi Electric Power Research Institute, Xi’an 710100, P. R. China
Abstract
Differing from the existing literature that only focus on controlling some simple chaotic power system models, this paper aims to control chaotic oscillations in complex seven-dimensional power system model. First, based on fixed-time stability theory, a novel fixed-time synergetic controller is proposed to make its macro variable enter into an invariant manifold within a fixed-time upper bound by a constant, depending only on control parameters that can be changed by the designer and calculated theoretically. The presented controller can eliminate chattering and achieve exact convergence of the macro variable. Then, the proposed control method is applied to suppress chaos in the seven-dimensional power system model. Based on the important idea that chaotic oscillation in a power system is caused by its excess energy, a model of energy storage device controller is employed in the controller design process to absorb active power from the entire controlled system. Finally, several simulation examples are given to confirm the effectiveness, the superiority and the robustness of the proposed control scheme. Compared with the existing literature, a relatively general method of suppressing chaotic oscillations in power systems is developed.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献