MODELING OF PROTEIN INTERACTIONS INVOLVED IN CARDIAC TENSION DEVELOPMENT

Author:

SACHSE F. B.1,GLÄNZEL K. G.2,SEEMANN G.2

Affiliation:

1. Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, UT 84112-5000, USA

2. Institut für Biomedizinische Technik, Universität Karlsruhe (TH), Karlsruhe, Germany

Abstract

Modeling of protein interactions responsible for cardiac tension development can enhance the understanding of physiological and pathophysiological phenomena of the heart. Principal components of muscular tension development are the proteins actin, myosin, troponin and tropomyosin. The tension is produced by cross-bridge cycling of actin and myosin using adenosine triphosphate as energy source. The cross-bridge cycling is initiated by binding of intracellular calcium to troponin, resulting in configuration changes of tropomyosin.In this work a hybrid model of protein interactions in cardiac tension development is derived on basis of recent measurements and descriptions on protein level. Dependencies on intracellular calcium concentration, sarcomere stretch and stretch velocity as well as cooperativity mechanisms are incorporated. The model quantifies the tension development by states associated to configurations of the involved proteins. The model enables in conjunction with electrophysiological models of cardiac myocytes the reconstruction of electro-mechanical phenomena. Numerical simulations with the hybrid model were performed, which illustrated the reconstruction of steady state and length switches experiments. The steady state experiments describe the force-cytosolic [ Ca2+] relationship in intact rat cardiac trabeculae. The length switch experiments provide data on the redevelopment of force after sudden stretch in rabbit right ventricular papillary muscles. Results of the numerical simulations show quantitative agreement with experimental studies.The hybrid model of cardiac tension development offers interfaces to further models of cardiac electro-mechanics. The hybrid model can be coupled with models of cellular electrophysiology and passive mechanics of myocardium allowing the inclusion of mechano-electrical feedback mechanisms. The hybrid model can be applied to elucidate cooperativity mechanisms, pathophysiological changes and metabolism of tension development.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3