Multitype Activity Coexistence in an Inertial Two-Neuron System with Multiple Delays

Author:

Song Zigen1,Xu Jian2,Zhen Bin3

Affiliation:

1. College of Information Technology, Shanghai Ocean University, Shanghai 201306, P. R. China

2. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, P. R. China

3. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China

Abstract

In this paper, an inertial two-neuron system with multiple delays is analyzed to exhibit the effect of time delays on system dynamics. The parameter region with multiple equilibria is obtained employing the pitchfork bifurcation of trivial equilibrium. The stability analysis illustrates that two nontrivial equilibria are both stable for any delays. It implies that the neural system exhibits a stability coexistence of two resting states. Further, due to the existence of multiple delays, the neural system has a periodic activity around the trivial equilibrium via Hopf bifurcation. Finally, numerical simulations are employed to illustrate many richness coexistence for multitype activity patterns. Employing the period-adding route and fold bifurcation of periodic orbit, the neural system may have multistability coexistence of two resting states, two ASP-3s (anti-symmetric periodic activity with period three), one SSP-1 (self-symmetric periodic activity with period one), and one quasi-periodic spiking. Additionally, with increasing delay, quasi-periodic spiking evolves into chaos behavior.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3