A Lightweight CNN Based on Memristive Stochastic Computing for Electronic Nose

Author:

Yang Bin1ORCID,Chen Tao1ORCID,Chen Ai1ORCID,Duan Shukai1234ORCID,Wang Lidan1234ORCID

Affiliation:

1. College of Artificial Intelligence, Southwest University, Chongqing 400715, P. R. China

2. National and Local Joint Engineering Research Center of Intelligent Transmission and Control Technology, Chongqing 400715, P. R. China

3. Chongqing Key Laboratory of Brain-Inspired Computing and Intelligent Chips, Chongqing 400715, P. R. China

4. Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, P. R. China

Abstract

Gas detection plays different roles in different environments. Traditional algorithms implemented on electronic nose for gas detection and recognition have high complexity and cannot resist device drift. In response to the above issues, we propose a convolutional neural network based on memristive Stochastic Computing (SC), which combines the characteristics of small devices and low power consumption of memristor devices, as well as the fast and fault-tolerant random calculation speed. It can effectively utilize hardware advantages, recognizing gases by electronic nose. The experimental results show that for two different gas sensor array datasets, the accuracy of the proposed method can achieve the level of 99%. When using memristive SC for deduction, the accuracy decreases by less than 1%, but in drift data, the accuracy can be improved by about 3%. Finally, the improvement in area, power, and energy compared to inference in GPU (NVIDIA Geforce RTX 3060 Laptop) is 1104X, 48X, and 9X, respectively.

Funder

National Natural Science Foundation of China

Chongqing Talent Plan Contract System Project

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3