Affiliation:
1. Department of Science and Technology, Guangxi University of Technology, Liuzhou 545006, P. R. China
2. Department of Mathematics, East China Normal University, Shanghai 200062, P. R. China
Abstract
In this paper, SEIS epidemic models with varying population size are considered. Firstly, we consider the case when births of population are throughout the year. A threshold σ is identified, which determines the outcome of disease, that is, when σ < 1, the disease dies out; whereas when σ > 1, the disease persists and the unique endemic equilibrium is globally asymptotically stable; when σ = 1, bifurcation occurs and leads to "the change of stability". Two other thresholds σ′ and [Formula: see text] are also identified, which determine the dynamics of epidemic model with varying population size, when the disease dies out or it is endemic. Secondly, we consider the other case, birth pulse. The population density is increased by an amount B(N)N at the discrete time nτ, where n is any non-negative integer and τ is a positive constant, B(N) is density-dependent birth rate. By applying the corresponding stroboscopic map, we obtain the existence of infection-free periodic solution with period τ. Lastly, through numerical simulations, we show the dynamic complexities of SEIS epidemic models with varying population size, there is a sequence of bifurcations, leading to chaotic strange attractors. Non-unique attractors also appear, which implies that the dynamics of SEIS epidemic models with varying population size can be very complex.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献