Affiliation:
1. DBS&H, CEME, National University of Sciences and Technology, Islamabad, Pakistan
Abstract
In this paper, we have discussed the food movement in stomach with thermal boundary conditions. Eyring–Prandtl fluid model is considered. Formulation of the considered phenomena have been developed for both fixed and moving frame of references. Regular perturbation is used to find the solution of stream function, temperature profile and pressure gradient. Analysis has been carried out for velocity, "stream function, temperature, pressure gradient and heat transfer". Appearance of pressure gradient is quite complicated so to get the expression for pressure rise we have used numerical integration. It is perceived that the velocity close to the channel walls is not same in outlook of the Eyring–Prandtl fluid parameter taken as β and Hartman number M. The velocity decreases by increasing β and M.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献