Mathematical analysis of a tuberculosis model with imperfect vaccine

Author:

Egonmwan A. O.1ORCID,Okuonghae D.1

Affiliation:

1. Department of Mathematics, University of Benin, P.M.B. 1154, Benin City, Nigeria

Abstract

Since 1921, the Bacille Calmette–Guerin (BCG) vaccine continues to be the most widely used vaccine for the prevention of Tuberculosis (TB). However, the immunity induced by BCG wanes out after some time making the vaccinated individual susceptible to TB infection. In this work, we formulate a mathematical model that incorporates the vaccination of newly born children and older susceptible individuals in the transmission dynamics of TB in a population, with a vaccine that can confer protection on older susceptible individuals. In the absence of disease-induced deaths, the model is shown to undergo the phenomenon of backward bifurcation where a stable disease-free equilibrium (DFE) co-exists with a stable positive (endemic) equilibrium when the associated reproduction number is less than unity. It is shown that this phenomenon does not exist in the absence of imperfect vaccine, exogenous reinfection, and reinfection of previously treated individuals. It is further shown that a special case of the model has a unique endemic equilibrium point (EEP), which is globally asymptotically stable when the associated reproduction number exceeds unity. Uncertainty and sensitivity analysis are carried out to identify key parameters that have the greatest influence on the transmission dynamics of TB in the population using the total population of latently infected individuals, total number of actively infected individuals, disease incidence, and the effective reproduction number as output responses. The analysis shows that the top five parameters of the model that have the greatest influence on the effective reproduction number of the model are the transmission rate, the fraction of fast disease progression, modification parameter which accounts for reduced likelihood to infection by vaccinated individuals due to imperfect vaccine, rate of progression from latent to active TB, and the treatment rate of actively infected individuals, with other key parameters influencing the outcomes of the other output responses. Numerical simulations suggest that with higher vaccination rate of older susceptible individuals, fewer new born children need to be vaccinated, in order to achieve disease eradication.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3