Numerical investigation of fractional model of Phytoplankton–Toxic Phytoplankton–Zooplankton system with convergence analysis

Author:

Dubey Ved Prakash1,Singh Jagdev23,Alshehri Ahmed M.3,Dubey Sarvesh4,Kumar Devendra5

Affiliation:

1. Faculty of Mathematical and Statistical Sciences, Shri Ramswaroop Memorial University, Barabanki-225003, Uttar Pradesh, India

2. Department of Mathematics, JECRC University, Jaipur-303905, Rajasthan, India

3. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

4. Department of Physics L.N.D. College, (B.R. Ambedkar Bihar University, Muzaffarpur), Motihari-845401, Bihar, India

5. Department of Mathematics, University of Rajasthan, Jaipur-302004, Rajasthan, India

Abstract

In this paper, a fractional order model of the phytoplankton–toxic phytoplankton–zooplankton system with Caputo fractional derivative is investigated via three computational methods, namely, residual power series method (RPSM), homotopy perturbation Sumudu transform method (HPSTM) and the homotopy analysis Sumudu transform method (HASTM). This model is constituted by three components: phytoplankton, toxic phytoplankton and zooplankton. Phytoplankton species are self-feeding members of the plankton community and play a very significant role in ecosystems. A wide range of sea creatures get food through phytoplankton. This paper focuses on the implementation of the three above-mentioned computational methods for a nonlinear time-fractional phytoplankton–toxic phytoplankton–zooplankton (PTPZ) model with a perception to study the dynamics of a model. This study shows that the solutions obtained by employing the suggested computational methods are in good agreement with each other. The computational procedures reveal that the HASTM solution generates a more general solution as compared to RPSM and HPSTM and incorporates their results as a special case. The numerical results presented in the form of graphs authenticate the accuracy of computational schemes. Hence, the implemented methods are very appropriate and relevant to handle nonlinear fractional models. In addition, the effect of variation of fractional order of a time derivative and time [Formula: see text] on populations of phytoplankton, toxic–phytoplankton and zooplankton has also been studied through graphical presentations. Moreover, the uniqueness and convergence analyses of HASTM solution have also been discussed in view of the Banach fixed-point theory.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3