EFFECT OF A VARIABLE MAGNETIC FIELD ON PERISTALTIC SLIP FLOW OF BLOOD-BASED HYBRID NANOFLUID THROUGH A NONUNIFORM ANNULAR CHANNEL

Author:

DOLUI SOUMINI1ORCID,BHAUMIK BIVAS1,DE SOUMEN1,CHANGDAR SATYASARAN2

Affiliation:

1. Department of Applied Mathematics, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, West Bengal, India

2. Department of Computer Science and University of Copenhagen, Copenhagen, Denmark

Abstract

This paper analyzes the impact of hybrid nanoparticles (Cu–TiO2) on a two-dimensional peristaltic blood flow pattern in a nonuniform cylindrical annulus in the presence of an external induced magnetic field with wall slip. Further, this study focuses on the flow dynamics of single and hybrid nanofluids through endoscopic or catheterized effects. The mathematical model consisting of continuity, linear momentum, thermal energy, and Maxwell’s equations is simplified under the assumptions of long wavelength and negligible Reynolds number. The Homotopy perturbation method (HPM) is employed to get an approximate analytical solution of nonlinear dimensionless momentum equations. Based on the mathematical relationships and graphic visualization, the influence of the pertinent parameters described the velocity profile, temperature distribution, induced magnetic field, current density distribution, wall shear stress, and heat transfer coefficient. With the help of contours, the trapping phenomenon is also presented. The results reveal that the Lorentz force significantly reduces the Cu–TiO2/blood nanofluid velocity, whereas the elevating Grashof number does the opposite. Compared with copper nanoparticles, hybrid nanoparticles have a higher wall shear stress. The increasing values of Reynolds numbers amplify the induced magnetic field on annular surfaces. In the axial direction, Lorentz force significantly decreases the current density distribution for hybrid nanofluid. Moreover, hybrid nanoparticles (Cu–TiO2) exhibit superior heat transfer than Copper (Cu) nanoparticles in the blood-based fluid. According to the graphical outcomes, hybrid nanoparticles are comparatively more effective than unitary nanoparticles in the blood.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3