DEPRESSION DIAGNOSIS SUPPORT SYSTEM BASED ON EEG SIGNAL ENTROPIES

Author:

FAUST OLIVER1,ANG PENG CHUAN ALVIN2,PUTHANKATTIL SUBHA D.3,JOSEPH PAUL K.3

Affiliation:

1. School of Science and Engineering, Habib University, Karachi, 75350, Pakistan

2. Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore

3. Department of Electrical Engineering, National Institute of Technology, Calicut, India

Abstract

Electroencephalography (EEG) is a measure which represents the functional activity of the brain. We show that a detailed analysis of EEG measurements provides highly discriminant features which indicate the mental state of patients with clinical depression. Our feature extraction method revolves around a novel processing structure that combines wavelet packet decomposition (WPD) and non-linear algorithms. WPD was used to select appropriate EEG frequency bands. The resulting signals were processed with the non-linear measures of approximate entropy (ApEn), sample entropy (SampEn), renyi entropy (REN) and bispectral phase entropy ( P h). The features were selected using t-test and only discriminative features were fed to various classifiers, namely probabilistic neural network (PNN), support vector machine (SVM), decision tree (DT), k-nearest neighbor algorithm (k-NN), naive bayes classification (NBC), Gaussian mixture model (GMM) and Fuzzy Sugeno Classifier (FSC). Our classification results show that, with a classification accuracy of 99.5%, the PNN classifier performed better than the rest of classifiers in discriminating between normal and depression EEG signals. Hence, the proposed decision support system can be used to diagnose, and monitor the treatment of patients suffering from depression.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3