AUTOMATED DIAGNOSIS OF DIABETES USING ENTROPIES AND DIABETIC INDEX

Author:

ACHARYA U. RAJENDRA123,FUJITA HAMIDO4,BHAT SHREYA5,KOH JOEL EW1,ADAM MUHAMMAD1,GHISTA DHANJOO N.6,SUDARSHAN VIDYA K.1,CHUA KOK POO1,CHUA KUANG CHUA1,MOLINARI FILIPPO7,NG E. Y. K.8,TAN RU SAN9

Affiliation:

1. Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore

2. Department of Biomedical Engineering, School of Science and Technology, SIM University, Singapore

3. Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Malaysia

4. Iwate Prefectural University (IPU), Faculty of Software and Information Science, Iwate, Japan

5. Department of Psychiatry, St. John’s Research Institute, Bangalore 560034, India

6. University 2020 Foundation, Massachusetts, USA

7. Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy

8. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore

9. Department of Cardiology, National Heart Centre, Singapore

Abstract

Diabetes Mellitus (DM) is a chronic metabolic disorder that hampers the body’s energy absorption capacity from the food. It is either caused by pancreatic malfunctioning or the body cells being inactive to insulin production. Prolonged diabetes results in severe complications, such as retinopathy, neuropathy, cardiomyopathy and cardiovascular diseases. DM is an incurable disorder. Thus, diagnosis and monitoring of diabetes is essential to prevent the body organs from severe damage. Heart Rate Variability (HRV) signal processing can be used as one of the methods for the diagnosis of DM. Our paper introduces a noninvasive technique of automated diabetic diagnosis using HRV signals. The R-R interval signals are decomposed using Shearlet transforms integrated with Continuous Wavelet Transform (CWT), and their characteristic features are extracted by using Shannon’s, Renyi’s, Kapur entropies, energy and Higher Order Spectra (HOS). Then, Locality Sensitive Discriminant Analysis (LSDA) is employed to remove insignificant features and reduce the number of employed features. These redundant features are eliminated by using six feature selection algorithms: Student’s t-test, Receiver Operating Characteristic Curve (ROC), Wilcoxon signed-rank test, Bhattacharyya distance, Information entropy and Fuzzy Max-Relevance and Min-Redundancy (MRMR). This step is followed by classification of normal and diabetic signals using different classifiers, such as discriminant classifiers, Decision Tree (DT), Support Vector Machine (SVM), Probabilistic Neural Network (PNN), Naïve Bayes (NB), Fuzzy Sugeno (FSC), Gaussian Mixture Model (GMM), AdaBoost and k-Nearest Neighbor (k-NN) classifier. In these classifiers, the selected features are employed to distinguish diabetic signals from normal signals. These classifiers are trained and then tested to validate their accuracy to make accurate diagnosis. The FSC classifier is shown to have the highest (100%) accuracy. Nevertheless, we go one step further in formulating another novel classifier in the form of the diabetic index, and have shown how distinctly it is able to separate diabetic signals from normal signals.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3