AUTOMATED IDENTIFICATION OF CORONARY ARTERY DISEASE FROM SHORT-TERM 12 LEAD ELECTROCARDIOGRAM SIGNALS BY USING WAVELET PACKET DECOMPOSITION AND COMMON SPATIAL PATTERN TECHNIQUES

Author:

OH SHU LIH1,ADAM MUHAMMAD1,TAN JEN HONG1,HAGIWARA YUKI1,SUDARSHAN VIDYA K.23,KOH JOEL EN WEI1,CHUA KUANG CHUA1,CHUA KOK POO1,TAN RU SAN4,NG EDDIE Y. K.5

Affiliation:

1. Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore

2. Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Science, 599491, Singapore

3. School of Electrical and Computer Engineering, University of Newcastle, Singapore

4. Department of Cardiology, National Heart Centre, Singapore

5. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore

Abstract

The occlusion of the coronary arteries commonly known as coronary artery disease (CAD) restricts the normal blood circulation required to the heart muscles, thus results in an irreversible myocardial damage or death (myocardial infarction). Clinically, electrocardiogram (ECG) is performed as a primary diagnostic tool to capture these cardiac activities and detect the presence of CAD. However, the use of computer-aided techniques can reduce the visual burden and manual time required for the analysis of complex ECG signals in order to identify the CAD affected subjects from normal ones. Therefore, in this study, a novel computer-aided technique is proposed using 2[Formula: see text]s of 12 lead ECG signals for the identification of CAD affected patients. Each of the 2[Formula: see text]s 12 lead ECG signal beats (3791 normal and 12308 CAD ECG signal beats) are implemented with four levels of wavelet packet decomposition (WPD) to obtain various coefficients. Using the fourth-level coefficients obtained for each lead ECG signal beat, new 2[Formula: see text]s. ECG signal beats are reconstructed. Later, the reconstructed signals are split into two-fold data sets, in which one set is used for acquiring common spatial pattern (CSP) filter and the other for obtaining features vector (vice versa). The obtained features are one by one fed into k-nearest neighbors (KNN) classifier for automated classification. The proposed system yielded maximum average classification results of 99.65% accuracy, 99.64% sensitivity and 99.7% specificity using 10 features. Our proposed algorithm is highly efficient and can be used by the clinicians as an aiding system in their CAD diagnosis, thus, assisting in faster treatment and avoiding the progression of CAD condition.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3