AUTOMATED ULCER AND BLEEDING CLASSIFICATION FROM WCE IMAGES USING MULTIPLE FEATURES FUSION AND SELECTION

Author:

LIAQAT AMNA1,KHAN MUHAMMAD ATTIQUE12,SHAH JAMAL HUSSAIN1,SHARIF MUHAMMAD1,YASMIN MUSSARAT1,FERNANDES STEVEN LAWRENCE3

Affiliation:

1. Department of Computer Science, COMSATS University Islamabad, Wah Campus, Pakistan

2. Department of Computer Science and Engineering, HITEC University, Museum Road, Taxila, Pakistan

3. Department of Electronics and Communication Engineering, Sahyadri College of Engineering and Management, Mangalore, Karnataka, India

Abstract

In the area of medical imaging and computer vision, automatic diagnosis of ulcer and bleeding from wireless capsule endoscopy images has been an active research domain. It contains several challenges including low contrast, complex background, lesion shape and color which affect its segmentation and classification accuracy. In this article, a novel method for automated detection and classification of stomach infection is implemented. The proposed method consists of four major steps including preprocessing, lesion segmentation, image representation and classification. The lesion contrast is improved in preprocessing step by employing 3D-box filtering, 3D-median filtering and HSV transformation. In the second step, geometric features are extracted and applied to the saturated channel to give a binary image. The binary image is further improved by fusion of generated mask. After that, extraction of three types of features including color, shape and surf is performed from HSV and binary segmented images and their information is fused by a serial based method. A principal component analysis (PCA) and correlation coefficient based feature selection approach is proposed which are classified by multi class support vector machine (M-SVM). The proposed method is evaluated on personally collected images of three different classes including ulcer, bleeding and healthy. The M-SVM performs well with a maximum accuracy of 98.3% which shows the authenticity of presented method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3