MODELING OF ARTIFICIALLY ACTIVATED MUSCLE AND APPLICATION TO FES CYCLING

Author:

GFÖHLER MARGIT1,ANGELI THOMAS1,LUGNER PETER2

Affiliation:

1. Institute of Machine Elements, Vienna University of Technology, Getreidemarkt 9/306, A-1060 Vienna, Austria

2. Department of Mechanics, Vienna University of Technology, Wiedner Hauptstraße 8–10/325, A-1040 Vienna, Austria

Abstract

Functional Electrical Stimulation (FES) enables paraplegics to move their paralyzed limbs; the skeletal muscles are artificially activated. The purpose of this study is to establish a mechanical muscle model for an artificially activated muscle, based on a Hill-type muscle model. In comparison to modeling a physiologically activated muscle, for the artificially activated muscle, a number of additional parameters and their influence on the force generation has to be considered. The model was implemented into a forward dynamic simulation of paraplegic cycling. The stimulation patterns were optimized for surface stimulation of gluteus maximus, quadriceps, hamstrings, and peronaeus reflex. A simulation of a startup with 50% of maximum activation in the optimized stimulation intervals analyses drive torques and mean power per cycle and the resulting riding performance of the rider-cycle system. For validation of the simulation, the results were compared to measurements of the forces applied to the crank during steady-state cycling of a paraplegic test person.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Reference30 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3