INTEGRATIVE COMPUTER-AIDED DIAGNOSTIC WITH BREAST THERMOGRAM

Author:

NG E. Y. K.1,KEE E. C.1

Affiliation:

1. College of Engineering, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Abstract

Thermography is a non-invasive and non-contact imaging technique widely used in the medical arena. This paper investigates the analysis of thermograms with the use of biostatistical methods and Artificial Neural Networks (ANN). It is desired that through these approaches, highly accurate diagnosis using thermography techniques can be established. The proposed advanced technique is a multipronged approach comprising of Linear Regression (LR), Radial Basis Function Network (RBFN) and Receiver Operating Characteristics (ROC). It is a novel and integrative technique that can be used to analyze complicated and large numerical data. In this study, the advanced technique will be used to analyze breast cancer thermogram for diagnosis purposes. The use of LR shows the correlation between the variables and the actual health status (healthy or cancerous) of the subject, which is decided by using mammography. This is important when selecting the variables to be used as inputs, in particular, for building the neural network. For ANN, RBFN is applied. Based on the various inputs fed into the network, RBFN will be trained to produce the desired outcome, which is either positive for cancerous or negative for healthy cases. When this is done, the RBFN algorithm will possess the ability to predict the outcome when there are new input variables. The advantages of using RBFN include fast training, superior classification and decision making abilities as compared to other networks such as back-propagation. Next, ROC is used to evaluate the accuracy, sensitivity and specificity of the outcome of RBFN Test files. The best results obtained are an accuracy (score) rate of 80.95%, with 81.2% sensitivity and 88.2% specificity. For breast cancer diagnosis, clinical examination by experienced doctors has an accuracy rate of approximately 60–70%. Hence, the proposed method has a higher accuracy rate than the existing practice. Through the use of Bio-statistical methods and ANN, improvements are made in thermography application with regard to achieving a higher level of accuracy rate in diagnosis as compared to clinical examination. It has now become possible to use thermography as a powerful adjunct tool for breast cancer detection, together with mammography for diagnosis purposes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3