Affiliation:
1. School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria, 3001, Australia
Abstract
In the recent past, blind source separation (BSS) algorithms using multivariate statistical data analysis technique have been successfully used for source identification and separation in the field of biomedical and statistical signal processing. Recently numbers of different BSS techniques have been developed. With BSS methods being the feasible method for source separation and decomposition of biosignals, it is important to compare the different techniques and determine the most suitable method for the applications. This paper presents the performance of five BSS algorithms (SOBI, TDSEP, FastICA, JADE and Infomax) for decomposition of sEMG to identify subtle finger movements. It is observed that BSS algorithms based on second-order statistics (SOBI and TDSEP) gives better performance compared to algorithms based on higher-order statistics (FastICA, JADE and infomax).
Publisher
World Scientific Pub Co Pte Lt
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献