DEALING WITH SKIN MOTION AND WOBBLING MASSES IN INVERSE DYNAMICS

Author:

GÜNTHER MICHAEL12,SHOLUKHA VIKTOR A.13,KESSLER DANNY1,WANK VEIT14,BLICKHAN REINHARD1

Affiliation:

1. Institut für Sportwissenschaft, Lehrstuhl für Bewegungswissenschaft, Friedrich-Schiller-Universität, Seidelstraße 20, D-07749 Jena, Deutschland

2. Institut für Astronomie und Astrophysik, Theoretische Astrophysik, Arbeitsgruppe Biomechanik, Eberhard-Karls-Universität, Auf der Morgenstelle 10 C, D-70276 Tübingen, Deutschland

3. Department of Applied Mathematics, State Polytechnical University, St. Petersburg, Russia

4. Institut für Sportwissenschaft, Universität Karlsruhe, Kaiserstr. 12, D-76128 Karlsruhe, Deutschland

Abstract

Inverse dynamics is a standard analysis in biomechanics to reconstruct time histories of internal driving forces and torques from measured external forces and segmental kinematics. The main sources of inconsistency leading to analytical artefacts in this process are skin marker and soft tissue motion. These potentially artificial high frequency fluctuations in the joint torques may serve as an erroneous basis of (misleading) assumptions with respect to muscular activity. Here we suggest techniques to reduce these errors. In both parts of this study, high-speed video and force platform data were acquired. In one part, 69 sequences of human barefoot running were sampled followed by an inverse dynamic analysis of the stance leg. The time history of the hip joint torque in the sagittal plane served as a sensitive "detector" of dynamic analysis artefacts. We show that the most important error — the relative skin to bone motion especially of the knee marker — can be reduced significantly by processing kinematic data using bone rigidity (constant segment lengths) and bony contour (frontal knee edge) information. Further on, neglecting significantly initiated soft tissue dynamics in the inverse dynamic model introduces another inconsistency in the analytical process. Therefore, in a second part of this study, soft tissue kinematics from 14 jumping sequences were identified. These data provided a set of coupling parameters of wobbling masses to the bone that were ready to be implemented in the inverse dynamic model. Using realistic bone kinematics mainly avoids phase shifts in the acceleration scenario within the leg, and thus artifical hip torque fluctuations within the whole contact period. In human running, accounting for soft tissue dynamics mainly affects the calculated timing of the hip joint torque during the impact phase.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3