TRANSMISSIBILITY OF WHOLE BODY VIBRATION STIMULI THROUGH HUMAN BODY IN DIFFERENT STANDING POSTURES

Author:

YANG LIN12,GONG HE31,ZHANG MING1

Affiliation:

1. Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China

2. Shanghai Gaitech Scientific Instruments Co., Ltd, Shanghai, China

3. Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China

Abstract

This study focuses on the transmissibility of whole body vibration stimuli through human body in different standing postures to explore the mechanism in which vibration stimuli could be better used as a regimen for bone loss. Five volunteers were guided to stay at three standing postures and imposed of frequency-adjustable vibration stimuli on the plantar surfaces side-alternately. Motion capture system was used to acquire the vibration signals at head, pelvis, knee up, knee down and ankle, from which the transmissibility of vibration stimuli can be obtained. The results showed that transmissibility of vibration stimuli was closely correlated with frequency and skeletal sites. Transmissibility of vibration stimuli in head was much smaller than any other skeletal sites. Transmissibility in the ankle was always in the vicinity of unit one in all the three postures for the vibration stimuli applied side-alternately on the plantar surfaces of both feet. There was an obvious peak around 9 to 11 Hz in the transmissibility curves for knee joint and pelvis. In the resonant peak, transmissibility of vibration stimuli in knee joint and pelvis both exceeded unit one and reached 150%. As the frequency increased after 11 Hz, transmissibility of vibration stimuli decayed rapidly as a function of frequency and dropped to 25% at 30 Hz. This study may help to gain insight into the interaction mechanism between mechanical vibration stimuli and the responses of human musculoskeletal system.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3