MECHANICS OF ACTIVE POROUS MEDIA: BONE TISSUE ENGINEERING APPLICATION

Author:

PIERRE J.12,DAVID B.13,PETITE H.13,ODDOU C.12

Affiliation:

1. B2OA Laboratory, CNRS UMR 7052, University of Paris VII, XII and XIII, France

2. Faculty of Science and Technology, University of Paris XII, 61 Avenue du Général de Gaulle, F-94010 Creteil Cedex, France

3. Faculty of Medicine, University of Paris VII, 10 Avenue de Verdun, F-75010 Paris, France

Abstract

In orthopedics, a currently developed technique for large graft hybrid implants consists of using porous and biocompatible scaffolds seeded with a patient's bone cells. Successful culture in such large implants remains a challenge for biologists, and requires strict control of the physicochemical and mechanical environments achieved by perfusion within a bioreactor for several weeks. This perfusion, with a nutritive fluid carrying solute ingredients, is necessary for the active cells to grow, proliferate, differentiate, and produce extracellular matrices. An understanding and control of these processes, which lead to substrate degradation and extracellular matrix remodeling during the in vitro culture phase, depend widely on the success in the realization of new orthopedic biomaterials. Within this context, the analysis of the interactions between convective phenomena of hydrodynamic origin and chemical reactions of biological order which are associated to these processes is a fundamental challenge in the framework of bone tissue engineering. In order to better account for the different intricate processes taking place in such a sample and to design a relevant experimental protocol leading to the definition of an optimal tissue implant, we propose one- and two-dimensional theoretical models based on transport phenomena in porous active media.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3