Affiliation:
1. State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, P.R. China
2. Biomedical Engineering and Biomechanics Center, Xi'an Jiaotong University, P.R. China
3. School of Life Science and Technology, Xi'an Jiaotong University, P.R. China
Abstract
Inspired by the complex biophysical processes of cell adhesion and detachment under blood flow in vivo, numerous novel microfluidic devices have been developed to manipulate, capture, and separate bio-particles for various applications, such as cell analysis and cell enumeration. However, the underlying physical mechanisms are yet unclear, which has limited the further development of microfluidic devices and point-of-care (POC) systems. Mathematical modeling is an enabling tool to study the physical mechanisms of biological processes for its relative simplicity, low cost, and high efficiency. Recent development in computation technology for multiphase flow simulation enables the theoretical study of the complex flow processes of cell adhesion and detachment in microfluidics. Various mathematical methods (e.g., front tracking method, level set method, volume of fluid (VOF) method, fluid–solid interaction method, and particulate modeling method) have been developed to investigate the effects of cell properties (i.e., cell membrane, cytoplasma, and nucleus), flow conditions, and microchannel structures on cell adhesion and detachment in microfluidic channels. In this paper, with focus on our own simulation results, we review these methods and compare their advantages and disadvantages for cell adhesion/detachment modeling. The mathematical approaches discussed here would allow us to study microfluidics for cell capture and separation, and to develop more effective POC devices for disease diagnostics.
Publisher
World Scientific Pub Co Pte Ltd
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献