Affiliation:
1. Department of E&C Manipal Institute of Technology, Manipal 5761204, India
2. Department of E&C Engg. National Institute of Technology Karnataka, Surathkal 574157, India
3. Department of ECE, Ngee Ann Polytechnic, Singapore 599489, Singapore
Abstract
The eyes are complex sensory organs, they are designed to capture images under varying light conditions. Eye disorders, such as cataract, among the elderly are a major health problem. Cataract is a painless clouding of the eye lens which develops over a long period of time. During this time, the eyesight gradually worsens. It can eventually lead to blindness and, is common in older people. In fact, about a third of people over 65 have cataracts in one or both eyes. In this paper, we made use of two types of classifiers for identification of normal, cataract (early and developed stage), and post-cataract eyes using features extracted from optical images. These classifiers are artificial neural network and support vector machine. A database of 174 subjects, using the cross-validation strategy, is used to test the effectiveness of both classifiers. We demonstrate a sensitivity of more than 90% for both of these classifiers. Furthermore, they have a specificity of 100% and, as such, the results obtained are very promising. The proposed feature extraction and classification systems are ready clinically to run on a large amount of data sets.
Publisher
World Scientific Pub Co Pte Lt
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献