COMPLEXITY ANALYSIS OF SURFACE ELECTROMYOGRAPHY SIGNALS UNDER FATIGUE USING HJORTH PARAMETERS AND BUBBLE ENTROPY

Author:

SASIDHARAN DIVYA1,VENUGOPAL G.1,SWAMINATHAN RAMAKRISHNAN2

Affiliation:

1. Department of Instrumentation and Control Engineering, NSS College of Engineering, Affiliated to A P J Abdul Kalam Technological University, Palakkad, Kerala, India

2. Non-Invasive Imaging and Diagnostic Laboratory, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India

Abstract

This work aims to analyze the complexity of surface electromyography (sEMG) signals under muscle fatigue conditions using Hjorth parameters and bubble entropy (BE). Signals are recorded from the biceps brachii muscle of 25 healthy males during dynamic and isometric contraction exercises. These signals are filtered and segmented into 10 equal parts. The first and tenth segments are considered as nonfatigue and fatigue conditions, respectively. Activity, mobility, complexity, and BE features are extracted from both segments and classified using support vector machine (SVM), Naïve bayes (NB), k-nearest neighbor (kNN), and random forest (RF). The results indicate a reduction in signal complexity during fatigue. The parameter activity is found to increase under fatigue for both dynamic and isometric contractions with mean values of 0.35 and 0.22, respectively. It is observed that mobility, complexity, and BE are lowest during fatigue for both contractions. Maximum accuracy of 95.00% is achieved with the kNN and Hjorth parameters for dynamic signals. It is also found that the reduction of signal complexity during fatigue is more significant in dynamic contractions. This study confirms that the extracted features are suitable for analyzing the complex nature of sEMG signals. Hence, the proposed approach can be used for analyzing the complex characteristics of sEMG signals under various myoneural conditions.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3