NEW APPROACH IN MODELING PERISTALTIC TRANSPORT OF NON-NEWTONIAN FLUID

Author:

YAZDANPANH-ARDAKANI KOHYAR1,NIROOMAND-OSCUII HANIEH1

Affiliation:

1. Department of Mechanical Engineering, Sahand University of Technology, Tabriz, Iran

Abstract

Transporting content in most biological systems is done through peristaltic transport phenomenon, examples of which include urine transport from kidney to bladder, swallowing of food through esophagus, the movement of chyme in small intestine, lymph transport in the lymphatic vessels, and in the vasomotion of small blood vessels such as arterioles. The present investigation simulated a transient peristaltic transport by developing a model based on fluid–solid interaction (FSI) method. The conduit in which peristaltic flow occurred was assumed to be axisymmetric. The propagating wave was simulated by prescribing a set of displacements, along the radial direction, on the wall. Both fluid and solid domains underwent large deformations as load applied. Due to large deformations, the adaptive discretization was considered. The ADINA 8.5 software, as finite element analytical software, was applied to study peristaltic transport. The results indicated that the present numerical method can properly introduce the features of the flow. The obtained results reveal that as amplitude ratio increases, axial velocity will increase, resulting in an increase in volume flux. Volume flux fluctuates through the passage of time in a cycle and along a wavelength. An increase in index of non-Newtonian fluid results in a decrease in velocity and increase in wall shear stress. It is observed that by increasing the amplitude of propagating wave, reflux will be increased; meanwhile, peristalsis works as a more efficient pumping process against the pressure applied as a boundary condition. The discussion on reflux according to its physiological importance seems to be helpful, thus the net displacement of the fluid particles after the transit of a single wave was calculated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3