INTERPRETING GROUPS AND FIELDS IN SOME NONELEMENTARY CLASSES

Author:

HYTTINEN TAPANI1,LESSMANN OLIVIER2,SHELAH SAHARON34

Affiliation:

1. Department of Mathematics, University of Helsinki, P.O. Box 68, 00014, Finland

2. Mathematical Institute, Oxford University, Oxford, OX1 3LB, UK

3. Department of Mathematics Rutgers University, New Brunswick, New Jersey, USA

4. Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Abstract

This paper is concerned with extensions of geometric stability theory to some nonelementary classes. We prove the following theorem: Theorem. Let [Formula: see text] be a large homogeneous model of a stable diagram D. Let p, q ∈ SD(A), where p is quasiminimal and q unbounded. Let [Formula: see text] and [Formula: see text]. Suppose that there exists an integer n < ω such that [Formula: see text] for any independent a1, …, an ∈ P and finite subset C ⊆ Q, but [Formula: see text] for some independent a1, …, an, an+1 ∈ P and some finite subset C ⊆ Q. Then [Formula: see text] interprets a group G which acts on the geometry P′ obtained from P. Furthermore, either [Formula: see text] interprets a non-classical group, or n = 1,2,3 and •If n = 1 then G is abelian and acts regularly on P′. •If n = 2 the action of G on P′ is isomorphic to the affine action of K ⋊ K* on the algebraically closed field K. •If n = 3 the action of G on P′ is isomorphic to the action of PGL2(K) on the projective line ℙ1(K) of the algebraically closed field K. We prove a similar result for excellent classes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Logic

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Groups Carrying Homogeneous Weakened Pregeometries;Siberian Advances in Mathematics;2020-02

2. Categoricity and universal classes;Mathematical Logic Quarterly;2018-12

3. Constructing quasiminimal structures;Mathematical Logic Quarterly;2017-12-13

4. Finding a field in a Zariski-like structure;Annals of Pure and Applied Logic;2017-10

5. Quasiminimal structures, groups and Zariski-like geometries;Annals of Pure and Applied Logic;2016-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3