Affiliation:
1. Department of Mathematics, University of Florida, 358 Little Hall, P. O. Box 118105, Gainesville, FL 32611-8105, USA
Abstract
At present, H5N1 avian influenza (AI) is a zoonotic disease where the transmission to humans occurs from infected domestic birds. Since 2003, more than 500 people have been infected and nearly 60% of them have died. If the H5N1 virus becomes efficiently human-to-human transmittable, a pandemic will occur with potentially high mortality. A mathematical model of AI, which involves human influenza, is introduced to better understand the complex epidemiology of AI and the emergence of a pandemic strain. Demographic and epidemiological data on birds and humans are used for the parameterization of the model. The differential equation system faithfully projects the cumulative number of H5N1 human cases and captures the dynamics of the yearly cases. The model is used to rank the efficacy of the current control measures used to prevent the emergence of a pandemic strain. We find that culling without re-population and vaccination are the two most efficient control measures each giving 22% decrease in the number of H5N1 infected humans for each 1% change in the affected parameters (μb, νb for culling and βb, νb for vaccination). Control measures applied to humans, such as wearing protective gear, are not very efficient, giving less than 1% decrease in the number of H5N1 infected humans for each 1% decrease in βY, the bird-to-human transmission coefficient of H5N1. Furthermore, we find that should a pandemic strain emerge, it will invade, possibly displacing the human influenza virus in circulation at that time. Moreover, higher prevalence levels of human influenza will obstruct the invasion capabilities of the pandemic H5N1 strain. This effect is not very pronounced, as we find that 1% increase in human influenza prevalence will decrease the invasion capabilities of the pandemic strain with 0.006%.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献