DYNAMIC STUDY OF A RATIO-DEPENDENT PREDATOR–PREY MODEL WITH STRONG ALLEE EFFECT AND NONLINEAR HARVESTING

Author:

VERMA MAITRI1ORCID,SINGH DIVAKAR VIKRAM1

Affiliation:

1. Department of Mathematics, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University, Lucknow – 226 025, India

Abstract

The harvesting of species occurs in terrestrial and aquatic habitats across the world. It not only causes alteration in the population structure of the species subjected to harvesting but also of the species in interaction with the harvested species. The present work investigates the effect of nonlinear prey harvesting on the dynamics of a ratio-dependent predator–prey system with a strong Allee effect in prey population. It is found that the system exhibits a rich spectrum of dynamics including saddle-node bifurcation, Hopf bifurcation and homoclinic bifurcation with respect to the parameters that shape the nonlinear harvesting rate, namely, the maximum harvesting rate and a half-saturation constant that represents the prey density at which half of the maximum harvesting rate is reached. It is found that the basin of attraction of the stable coexistence state shrinks as the harvesting rate increases and if the harvesting rate is above a threshold value at which saddle-node bifurcation occurs, the stable coexistence of predator and prey populations is not possible for any initial start. It is also found that the harvesting policies in which the harvesting rate increases less rapidly at low prey population size are more favorable for the stable coexistence of species. The presence of Allee effect in the prey population is found to increase the chances of extinction of both species by reducing the threshold value of the harvesting rate at which the unconditional extinction occurs. Numerical simulations are carried out to support the analytical findings.

Funder

University Grants Commission

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3