MODELING INFECTIOUS DISEASES USING GLOBAL STOCHASTIC CELLULAR AUTOMATA

Author:

MIKLER ARMIN R.1,VENKATACHALAM SANGEETA1,ABBAS KAJA1

Affiliation:

1. Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, USA

Abstract

Susceptibles-infectives-removals (SIR) and its derivatives are the classic mathematical models for the study of infectious diseases in epidemiology. In order to model and simulate epidemics of an infectious disease, we use cellular automata (CA). The simplifying assumptions of SIR and naive CA limit their applicability to the real world characteristics. A global stochastic cellular automata paradigm (GSCA) is proposed, which incorporates geographic and demographic based interactions. The interaction measure between the cells is a function of population density and Euclidean distance, and has been extended to include geographic, demographic and migratory constraints. The progression of diseases using traditional CA and classic SIR are analyzed, and similar behavior to the SIR model is exhibited by GSCA, using the geographic information systems (GIS) gravity model for interactions. The limitations of the SIR and naive CA models of homogeneous population with uniform mixing are addressed by the GSCA model. The GSCA model is oriented to heterogeneous population, and can incorporate interactions based on geography, demography, environment and migration patterns. The progression of diseases can be modeled at higher levels of fidelity using the GSCA model, and facilitates optimal deployment of public health resources for prevention, control and surveillance of infectious diseases.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3