CELLULAR FEEDBACK NETWORKS AND THEIR RESILIENCE AGAINST MUTATIONS

Author:

BAILEY LORA D.1ORCID,KOMAROVA NATALIA L.2

Affiliation:

1. Grand Valley State University, Allendale, Michigan, USA

2. Department of Mathematics, University of California, Irvine, CA 92697, USA

Abstract

Many tissues undergo a steady turnover, where cell divisions are on average balanced with cell deaths. Cell fate decisions such as stem cell (SC) differentiations, proliferations, or differentiated cell (DC) deaths, may be controlled by cell populations through cell-to-cell signaling. Here, we examine a class of mathematical models of turnover in SC lineages to understand engineering design principles of control (feedback) loops, that may operate in such systems. By using ordinary differential equations that describe the co-dynamics of SCs and DCs, we study the effect of different types of mutations that interfere with feedback present within cellular networks. For instance, we find that mutants that do not participate in feedback are less dangerous in the sense that they will not rise from low numbers, whereas mutants that do not respond to feedback signals could rise and replace the wild-type population. Additionally, we asked if different feedback networks can have different degrees of resilience against such mutations. We found that all minimal networks, that is networks consisting of exactly one feedback loop that is sufficient for homeostatic stability of the wild-type population, are equally vulnerable. Mutants with a weakened/eliminated feedback parameter might expand from lower numbers and either enter unlimited growth or reach an equilibrium with an increased number of SCs and DCs. Therefore, from an evolutionary viewpoint, it appears advantageous to combine feedback loops, creating redundant feedback networks. Interestingly, from an engineering prospective, not all such redundant systems are equally resilient. For some of them, any mutation that weakens/eliminates one of the loops will lead to a population growth of SCs. For others, the population of SCs can actually shrink as a result of “cutting” one of the loops, thus slowing down further unwanted transformations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3