KINETIC MODELS ON ACETYLCHOLINESTERASE MODULATION BY SELF-SUBSTRATE AND POLYAMINES: ESTIMATION OF INTERACTION PARAMETERS AND RATE CONSTANTS FOR FREE AND ACETYLATED STATES OF THE ENZYME

Author:

VENTURINO ANDRÉS12,BERGOC ROSA MARÍA3,DE D'ANGELO ANA MARÍA PECHEN2,ROSENBAUM ENRIQUE ARTURO2

Affiliation:

1. Biological Chemistry, Faculty of Agricultural Sciences, University of Buenos Aires, Argentina

2. LIBIQUIMA, National University of Comahue, Neuquén, University of Buenos Aires, Argentina

3. Laboratory of Radioisotopes, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina

Abstract

Polyamines act as dual modulators on electric eel acetylcholinesterase, modifying both the apparent Km and Ki, depending on substrate levels. A kinetic model was developed to explain the results, based on two-step catalysis, a peripheral site for substrate inhibition apart from the catalytic site, and one binding site for polyamine. This model presented the best fittings to data, when compared with a simpler one considering one catalytic step. A fitting equation built up with sixteen independent parameters let us calculate the kinetic constants. In this way, we were able to solve the parameter identifiability problem arising from model uncertainty when only substrate was used in acetylcholinesterase kinetics. Besides, fitting parameters directly provide information about the binding constants of the different complexes, the modulatory strength of substrate and polyamines, and the effect on the standard activation free energy for acetylcholinesterase.Substrate inhibition operates mainly on the first catalytic step with an affinity constant of 5.2 mM-1, which is reduced to one third for the acetylated enzyme. The interaction factor between substrate binding at both sites is about 12. The modulatory strength of polyamines is spermine > spermidine > putrescine. This order is directly related to the number of amino groups in the molecule, and to the calculated free interaction energy. The effect of the number of amino groups on the binding energy is significantly increased in acetylated acetylcholinesterase. It is also inferred that the formation of a quaternary complex enzyme-substrate-substrate-polyamine would not be possible. Some relations between polyamine structure and acetylcholinesterase activity are suggested from estimated constants. Due to the distal amino group distances, it is possible for spermine and spermidine to span along the catalytic gorge of acetylcholinesterase, binding to the catalytic and peripheral sites in a way similar to bisquaternary ammonium inhibitors.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3