Affiliation:
1. Department of Biochemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
Abstract
Among species within a phylogenetic group, genomic GC% values can cover a wide range that is particularly evident at third codon positions. However, among genes within a genome, genic GC% values can also cover a wide range that is, again, particularly evident at third codon positions. Individual genes and genomes each have a "homostabilizing propensity" to adopt a relatively uniform GC%. Each gene (a "microisochore") occupies a discrete GC% niche of relatively uniform base composition amongst its fellow genes, which can collectively span a wide GC% range. Homostabilization serves to recombinationally isolate both genome sectors (facilitating gene duplication and differentiation) and genomes (facilitating genome duplication and differentiation; e.g., speciation). Although they may sometimes be in conflict, the individualities of genomes, and of genes within those genomes, are separately sustained by a common mechanism, uniformity of GC%. The protection against inadvertent recombination afforded by GC% differentiation is, in the general case, a prerequisite for phenotypic differentiation.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献