Affiliation:
1. Department of Ecology and Evolutionary Biology University of Kansas, Lawrence, KS 66045, USA
2. School of Mathematical and Statistical Sciences Arizona State University Tempe, Arizona 85287-1804, USA
3. Department of Public Health and Policy Faculty of Health and Life Sciences University of Liverpool Liverpool L69 3GL, UK
Abstract
A new mechanistic deterministic model for assessing the impact of temperature variability on malaria transmission dynamics is developed. Sensitivity and uncertainty analyses of the model parameters reveal that, for temperature values in the range 16–[Formula: see text]C, the three parameters with the greatest influence on disease dynamics are the mosquito carrying capacity, transmission probability per contact for susceptible mosquitoes and human recruitment rate. This study emphasizes the combined use of mosquito-reduction strategies and personal protection against mosquito bites during periods when the mean monthly temperatures are in the range 16.7–25[Formula: see text]C. For higher monthly mean temperatures in the range 26–34[Formula: see text]C, mosquito-reduction strategies should be emphasized ahead of personal protection. Numerical simulations of the model reveal that mosquito maturation rate has a minimum sensitivity (to the associated reproduction threshold of the model) at 24[Formula: see text]C and maximum at 30[Formula: see text]C. The mosquito biting rate has maximum sensitivity at 26[Formula: see text]C, while the minimum value for the transmission probability per bite for susceptible mosquitoes occurs at 24[Formula: see text]C. Furthermore, it is shown, using mean monthly temperature data from 67 cities across the four regions of sub-Saharan Africa, that malaria burden (measured in terms of the total number of new cases of infection) increases with increasing temperature in the range 16–28[Formula: see text]C and decreases for temperature values above 28[Formula: see text]C in West Africa, 27[Formula: see text]C in Central Africa, 26[Formula: see text]C in East Africa and 25[Formula: see text]C in South Africa. These findings, which support and complement a recent study by other authors, reinforce the potential importance of temperature and temperature variability on future malaria transmission trends. Further simulations show that mechanistic malaria transmission models that do not incorporate temperature variability may under-estimate disease burden for temperature values in the range 23–27[Formula: see text]C, and over-estimate disease burden for temperature values in the ranges 16–22[Formula: see text]C and 28–32[Formula: see text]C. Additionally, models that do not explicitly incorporate the dynamics of immature mosquitoes may under- or over-estimate malaria burden, depending on mosquito abundance and mean monthly temperature profile in the community.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献