A BIOCONVECTION MODEL FOR MHD FLOW AND HEAT TRANSFER OVER A POROUS WEDGE CONTAINING BOTH NANOPARTICLES AND GYROTATIC MICROORGANISMS

Author:

KHAN UMAR1,AHMED NAVEED1,MOHYUD-DIN SYED TAUSEEF12,BIN-MOHSIN BANDAR2

Affiliation:

1. Department of Mathematics, Faculty of Sciences, HITEC University, Taxila Cantt, Pakistan

2. Department of Mathematics, College of Sciences, King Saud University, Riyadh, SA

Abstract

This paper is dedicated to analyze the flow of a nanofluid over a porous moving wedge in the presence of gyrotactic microorganisms. Magnetohydrodynamic (MHD) effects coupled with the viscous dissipation are taken into consideration. The passive control model is used to formulate the problem. Suitable similarity transforms are employed to transform the equations governing the flow into a set of ordinary differential equations. Solution of the transformed system is obtained numerically using a well-known Runge–Kutta–Fehlberg (RKF) method coupled with shooting technique. Influence of parameters involved on velocity, temperature, concentration and the motile microorganisms density profiles are highlighted using a graphical aid. Expressions for skin friction coefficient, Nusselt number, Sherwood number and the motile microorganisms density number are obtained and presented graphically. For the validity of results obtained, a comparison is also presented with the existing results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3