MATHEMATICAL CHARACTERIZATION OF HETEROGENEITY IN A CANCER STEM CELL DRIVEN TUMOR GROWTH MODEL WITH NONLINEAR SELF-RENEWAL

Author:

NAZARI FERESHTEH1,PEARSON ALEXANDER T2,JACKSON TRACHETTE L3ORCID

Affiliation:

1. Applied BioMath, 210 Broadway, Suite 201, Cambridge, MA 02139, USA

2. Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL 60637, USA

3. Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48108-1043, USA

Abstract

The detection, in a wide variety of cancer types, of a population of highly tumorigenic cells that exhibit self-renewal and multipotency, which are hallmarks of stem cells, has transformed the current view of tumor initiation, progression, and treatment. Here, we develop and analyze a mathematical model for tumor growth that is based on the current biological understanding of the processes that underlie cellular expansion under the hierarchical guidelines of the cancer stem cell (CSC) hypothesis. Important features of the model include (i) a nonlinear probability of CSC self-renewal that reflects the fact that this key type of stem cell division can be regulated by extrinsic and intrinsic chemical signaling as well as environmental (niche) constraints and (ii) an amplification factor that captures the transient amplifying divisions that are a defining characteristic of progenitor cells. We present a thorough mathematical analysis of the model and highlight the conditions required for tumors to evolve toward either bounded or exponential growth. Numerical simulations further illustrate the impact of the various parameters on the tumor growth rate and on the heterogeneous cellular composition, which varies during progression.

Funder

National Institutes of Health

Simons Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3