MATHEMATICAL MODELING OF PANCREATIC CANCER TREATMENT WITH CANCER STEM CELLS

Author:

YILDIZ TUĞBA AKMAN1,KÖSE EMEK2,ELLIOTT SAMANTHA L.3

Affiliation:

1. Department of Computer Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey

2. Department of Mathematics and Computer Science, St. Mary’s College of Maryland, St. Mary’s City, MD 20619, USA

3. Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD 20619, USA

Abstract

Of all cancers, pancreatic cancer has a significantly low rate of survival, mostly due to lack of early screening. Thus, once detected, pancreatic cancer is usually in later stages, reducing the likelihood of full recovery. The most common treatment strategy is chemotherapy, although several immunotherapeutic drugs show promising results in extending the patient’s lifespan. In this paper, we provide a validated mathematical model for the pancreatic cancer after fitting the parameter values, such as tumor growth rate, inverse carrying capacity, activation and decay rate of pancreatic stellate cells, with the use of the experimental data presented by Cioffi et al. cioffi2015inhibition For treatments with the chemotherapeutic drugs, Abraxane and Gemcitabine, and the immunotherapeutic drug, Anti-CD47, we modified the model accurately and compared the simulation results with the experimental data not only to model pancreatic cancer treatment correctly but also to move forward with other drug trials. Then, we include the cancer stem cells, which are known to initiate tumors and cause a relapse post-chemotherapy, per cancer stem cell hypothesis so that cancer progression can be assessed based on this phenomenon. In addition, we investigate optimal drug protocols. We find out that the most effective treatment is dual therapy due to extending survival time when compared to other drugs. Moreover, this study reveals that drug dose is more effectual than frequency of drug injection on account of different treatment scheduling with the same dose over a week. The model could be a starting point to investigate pancreatic cancer progression based on cancer stem cell hypothesis and shed light on novel drug discoveries.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3