SYNCHRONIZATION OF CIRCADIAN OSCILLATORS AND PROTEIN SYNTHESIS CONTROL USING THE DERIVATIVE-FREE NONLINEAR KALMAN FILTER

Author:

RIGATOS GERASIMOS1,RIGATOU EFTHYMIA2

Affiliation:

1. Unit of Industrial Automation, Industrial Systems Institute, 26504, Rion Patras, Greece

2. Department of Paediatric Haematology-Oncology, Athens Children Hospital "Aghia Sofia", 11527, Athens, Greece

Abstract

The paper proposes a new method for synchronization of coupled circadian cells and for nonlinear control of the associated protein synthesis process using differential flatness theory and the derivative-free nonlinear Kalman filter. By proving that the dynamic model of the FRQ protein synthesis is a differentially flat one, its transformation to the linear canonical (Brunovsky) form becomes possible. For the transformed model, one can find a state feedback control input that makes the oscillatory characteristics in the concentration of the FRQ protein vary according to desirable setpoints. To estimate nonmeasurable elements of the state vector, the derivative-free nonlinear Kalman filter is used. The derivative-free nonlinear Kalman filter consists of the standard Kalman filter recursion on the linearized equivalent model of the coupled circadian cells and on computation of state and disturbance estimates using the diffeomorphism (relations about state variables transformation) provided by differential flatness theory. Moreover, to cope with parametric uncertainties in the model of the FRQ protein synthesis and with stochastic disturbances in measurements, the derivative-free nonlinear Kalman filter is redesigned in the form of a disturbance observer. The efficiency of the proposed Kalman filter-based control scheme is tested through simulation experiments.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3