SIMULATIONS OF TRANSITIONS FROM REGULAR TO STOCHASTIC PHYLLOTACTIC PATTERNS

Author:

JEUNE BERNARD1,BARABÉ DENIS2

Affiliation:

1. Laboratoire de Cytologie Expérimentale et Morphogenèse, Végétale, Université Pierre et Marie Curie, Bât. N2, 4 Place Jussieu, 75 252 Paris, Cedex 05, France

2. Institut de Recherche en Biologie Végétale, Jardin Botanique de Montréal, 4101 Sherbrooke Est, Montréal, Canada, H1X 2B2, Canada

Abstract

The paper deals with a statistical method to analyze irregular phyllotactic patterns. To characterize the degree of order in phyllotactic systems, we determine the variation of the angle of divergence of a given leaf with regard to the preceding one. By knowing the range of uncertainty of the angle of divergence, it is possible to determine from which leaves rank a system becomes completely disorganized. We show that there is a quantitative link between the degree of uncertainty of the angle of divergence, and the number of regularly and randomly distributed leaves. To quantify this relationship, we deduced a formula from numerical simulations involving different ranges of uncertainty that can be observed in the angle of divergence in three different phyllotactic patterns: distichous (two orthostichies), opposite-decussate (four orthostichies) and spiral (137°). A χ2statistical test allows us to determine the threshold of transition between ordered and disordered phyllotactic patterns with a fixed level of confidence. By using the sho mutants described by Itoh et al.1as a case study, we show that this formula is useful mainly for analyzing the degree of order in phyllotactic mutants from two complementary points of view: the number of regularly distributed leaves and the degree of uncertainty of the divergence angle.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stochastic approaches in phyllotaxis;Canadian Journal of Botany;2006-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3