HUMAN POPULATION EFFECTS ON THE ULSOOR LAKE FISH SURVIVAL

Author:

TIWARI PANKAJ KUMAR1,BULAI IULIA MARTINA2,BONA FRANCESCA3,VENTURINO EZIO1,MISRA ARVIND KUMAR4

Affiliation:

1. Dipartimento di Matematica “Giuseppe Peano”, via Carlo Alberto 10, 10123 Torino, Università di Torino, Italy

2. Department of Information Engineering, University of Padova, via Gradenigo, 6/B, 35131, Padova, Italy

3. DBIOS, University of Turin, via Accademia Albertina 13, 10123 Turin, Italy

4. Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi – 221005, India

Abstract

In this paper, we introduce a model to study the effects of human populations on fish survival in aquatic media. Directly, this occurs by fishing. Indirectly instead this is related to other human actions that lead to organic pollution and consequently low dissolved oxygen(DO) levels, thereby harming the aquatic fauna. Mathematically, we consider various nonlinear processes involving human population, organic pollutants, bacteria, DO and fish population. In the present study, our aim is to investigate the effect of depleted level of DO on the survival of fish populations in such an aquatic system. The case study in consideration is represented by the Ulsoor lake, Bengaluru, India. Into it, huge amounts of sewage were discharged and resulted in reduction of DO level and massive fish mortality. Equilibria are analyzed for feasibility and stability, substantiated via numerical simulations. Global sensitivity analysis identifies the important parameters having a significant impact on the fish population. The Partial Rank Correlation Coefficients (PRCCs) values of fish population in the lake with respect to input parameters of the system show that the growth rate of humans in the lake watershed has maximum negative correlation while the growth in the fish population due to DO has maximum positive correlation with the density of fish population in the lake. The results show that increase in human population may decrease fish population in the system to very low values. However, by controlling additional dissolved organic loads coming from domestic sewage, farm waste and many other sources, the level of DO can be brought back to values that allow fish survival. Maintaining it at these levels would preserve the ecosystem.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3