HPS_PSP: HIGH PERFORMANCE SYSTEM FOR PROTEIN STRUCTURE PREDICTION

Author:

ABDELHALIM MOHAMED B.1,MABROUK MAI S.2,SAYED AHMED Y.3

Affiliation:

1. College of Computing and Information Technology (CCIT), Arab Academy for Science Technology and Maritime Transport (AASTMT) Cairo, Egypt

2. Biomedical Engineering Department, Misr University for Science and Technology, 6 October City, Giza, Egypt

3. Physics and Engineering Mathematics Department, Faculty of Engineering at Mataria, Helwan Uinversity, Cairo, Egypt

Abstract

Prediction of least energy conformation of a protein from its primary structure (chain of amino acids) is an optimization problem associated with a large complex energy landscape. In this study, a simple 2D hydrophobic–hydrophilic model was used to model the protein sequence, which allows the fast and efficient design of genetic algorithm-based protein structure prediction approach. The neighborhood search strategy is integrated into the genetic operator. The neighborhood search guides the genetic operator to regions in the computational space with good solutions. To prevent convergence to local optima, the proposed method employs crowding-based parent replacement strategy, which improves the performance of the algorithm and the ability to deal with multiple numbers of solutions. The proposed algorithm was tested with a standard benchmark of HP sequences and comparative results demonstrate that the proposed system beats most of the evolutionary algorithms for seven sequences. It finds the best energy for a sequence of length [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3