THE IMPACT OF VACCINATION ON MALARIA PREVALENCE: A VACCINE-AGE-STRUCTURED MODELING APPROACH

Author:

VOGT-GEISSE KATIA1,NGONGHALA CALISTUS N.23ORCID,FENG ZHILAN4

Affiliation:

1. Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Peñalolén, Santiago, 7941169, Chile

2. Department of Mathematics, University of Florida, 1400 Stadium Rd, Gainesville, FL 32611, USA

3. Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA

4. Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, USA

Abstract

A deterministic model for the effects on disease prevalence of the most advanced pre-erythrocytic vaccine against malaria is proposed and studied. The model includes two vaccinated classes that correspond to initially vaccinated and booster dose vaccinated individuals. These two classes are structured by time-since-initial-vaccination (vaccine-age). This structure is a novelty for vector–host models; it allows us to explore the effects of parameters that describe timed and delayed delivery of a booster dose, and immunity waning on disease prevalence. Incorporating two vaccinated classes can predict more accurately threshold vaccination coverages for disease eradication under multi-dose vaccination programs. We derive a vaccine-age-structured control reproduction number [Formula: see text] and establish conditions for the existence and stability of equilibria to the system. The model is bistable when [Formula: see text]. In particular, it exhibits a backward (sub-critical) bifurcation, indicating that [Formula: see text] is no longer the threshold value for disease eradication. Thus, to achieve eradication we must identify and implement control measures that will reduce [Formula: see text] to a value smaller than unity. Therefore, it is crucial to be cautious when using [Formula: see text] to guide public health policy, although it remains a key quantity for decision making. Our results show that if the booster vaccine dose is administered with delay, individuals may not acquire its full protective effect, and that incorporating waning efficacy into the system improves the accuracy of the model outcomes. This study suggests that it is critical to follow vaccination schedules closely, and anticipate the consequences of delays in those schedules.

Funder

Fondecyt de Iniciacion Investigacion

Simons Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3