Online Task Resource Consumption Prediction for Scientific Workflows

Author:

da Silva Rafael Ferreira1,Juve Gideon1,Rynge Mats1,Deelman Ewa1,Livny Miron2

Affiliation:

1. University of Southern California, Information Sciences Institute, Marina Del Rey, CA, USA

2. University of Wisconsin Madison, Madison, WI, USA

Abstract

Estimates of task runtime, disk space usage, and memory consumption, are commonly used by scheduling and resource provisioning algorithms to support efficient and reliable workflow executions. Such algorithms often assume that accurate estimates are available, but such estimates are difficult to generate in practice. In this work, we first profile five real scientific workflows, collecting fine-grained information such as process I/O, runtime, memory usage, and CPU utilization. We then propose a method to automatically characterize workflow task requirements based on these profiles. Our method estimates task runtime, disk space, and peak memory consumption based on the size of the tasks’ input data. It looks for correlations between the parameters of a dataset, and if no correlation is found, the dataset is divided into smaller subsets using a clustering technique. Task estimates are generated based on the ratio parameter/input data size if they are correlated, or based on the probability distribution function of the parameter. We then propose an online estimation process based on the MAPE-K loop, where task executions are monitored and estimates are updated as more information becomes available. Experimental results show that our online estimation process results in much more accurate predictions than an offline approach, where all task requirements are estimated prior to workflow execution.

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3