EXTENDING OPENMP FOR TASK PARALLELISM

Author:

MAROWKA AMI1

Affiliation:

1. School of Computer Science and Engineering, The Computer Aided Design Laboratory, The Hebrew University of Jerusalem, Jerusalem, Israel, 91904, Israel

Abstract

In a wide variety of scientific parallel applications, both task and data parallelism must be exploited to achieve the best possible performance on a multiprocessor machine. These applications induce task-graph parallelism with coarse-grain granularity. Nevertheless, using the available task-graph parallelism and combining it with data parallelism can increase the performance of parallel applications considerably since an additional degree of parallelism is exploited. The OpenMP standard supports data parallelism but does not support task-graph parallelism. In this paper we present an integration of task-graph parallelism in OpenMP by extending the parallel sections constructs to include task-index and precedence-relations matrix clauses. There are many ways in which task-graph parallelism can be supported in a programming environment. A fundamental design decision is whether the programmer has to write programs with explicit precedence relations, or if the responsibility of precedence relations generation is delegated to the compiler. One of the benefits provided by parallel programming models like OpenMP is that they liberate the programmer from dealing with the underlying details of communication and synchronization, which are cumbersome and error-prone tasks. If task-graph parallelism is to find acceptance, writing task-graph parallel programs must be no harder than writing data parallel programs, and therefore, in our design, precedence relations are described through simple programmer annotations, with implementation details handled by the system. This paper concludes with a description of several parallel application kernels that were developed to study the practical aspects of task-graph parallelism in OpenMP. The examples demonstrate that exploiting data and task parallelism in a single framework is the key to achieving good performance in a variety of applications.

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OpenMP Implementation of Parallel Longest Common Subsequence Algorithm for Mathematical Expression Retrieval;Parallel Processing Letters;2021-05-27

2. Bsp2omp: A Compiler For Translating Bsp Programs To Openmp;International Journal of Parallel, Emergent and Distributed Systems;2009-08

3. Parallel computing on any desktop;Communications of the ACM;2007-09

4. An efficient synchronization model for OpenMP;Journal of Parallel and Distributed Computing;2006-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3