Affiliation:
1. School of Computing, Queen's University, Kingston, Ontario, K7L 3N6, Canada
Abstract
A new computational paradigm is described which offers the possibility of superlinear (and sometimes unbounded) speedup, when parallel computation is used. The computations involved are subject only to given mathematical constraints and hence do not depend on external circumstances to achieve superlinear performance. The focus here is on geometric transformations. Given a geometric object A with some property, it is required to transform A into another object B which enjoys the same property. If the transformation requires several steps, each resulting in an intermediate object, then each of these intermediate objects must also obey the same property. We show that in transforming one triangulation of a polygon into another, a parallel algorithm achieves a superlinear speedup. In the case where a convex decomposition of a set of points is to be transformed, the improvement in performance is unbounded, meaning that a parallel algorithm succeeds in solving the problem as posed, while all sequential algorithms fail.
Publisher
World Scientific Pub Co Pte Lt
Subject
Hardware and Architecture,Theoretical Computer Science,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献